Kinase and channel activity of TRPM6 are co-ordinated by a dimerization motif and pocket interaction
نویسندگان
چکیده
Mutations in the gene that encodes the atypical channel-kinase TRPM6 (transient receptor potential melastatin 6) cause HSH (hypomagnesaemia with secondary hypocalcaemia), a disorder characterized by defective intestinal Mg2+ transport and impaired renal Mg2+ reabsorption. TRPM6, together with its homologue TRPM7, are unique proteins as they combine an ion channel domain with a C-terminally fused protein kinase domain. How TRPM6 channel and kinase activity are linked is unknown. Previous structural analysis revealed that TRPM7 possesses a non-catalytic dimerization motif preceding the kinase domain. This interacts with a dimerization pocket lying within the kinase domain. In the present study, we provide evidence that the dimerization motif in TRPM6 plays a critical role in regulating kinase activity as well as ion channel activity. We identify mutations within the TRPM6 dimerization motif (Leu1718 and Leu1721) or dimerization pocket (L1743A, Q1832K, A1836N, L1840A and L1919Q) that abolish dimerization and establish that these mutations inhibit protein kinase activity. We also demonstrate that kinase activity of a dimerization motif mutant can be restored by addition of a peptide encompassing the dimerization motif. Moreover, we observe that mutations that disrupt the dimerization motif and dimerization pocket interaction greatly diminish TRPM6 ion channel activity, in a manner that is independent of kinase activity. Finally, we analyse the impact on kinase activity of ten disease-causing missense mutations that lie outwith the protein kinase domain of TRPM6. This revealed that one mutation lying nearby the dimerization motif (S1754N), found previously to inhibit channel activity, abolished kinase activity. These results provide the first evidence that there is structural co-ordination between channel and kinase activity, which is mediated by the dimerization motif and pocket interaction. We discuss that modulation of this interaction could comprise a major regulatory mechanism by which TRPM6 function is controlled.
منابع مشابه
Mass Spectrometric Analysis of TRPM6 and TRPM7 Phosphorylation Reveals Regulatory Mechanisms of the Channel-Kinases
TRPM7 and TRPM6 were the first identified bifunctional channels to contain their own kinase domains, but how these channel-kinases are regulated is poorly understood. Previous studies identified numerous phosphorylation sites on TRPM7, but very little is known about TRPM6 phosphorylation or sites on TRPM7 transphosphorylated by TRPM6. Our mass spectrometric analysis of homomeric and heteromeric...
متن کاملRole of the alpha-kinase domain in transient receptor potential melastatin 6 channel and regulation by intracellular ATP.
Transient receptor potential melastatin 6 (TRPM6) plays an essential role in epithelial Mg(2+) transport. TRPM6 and its closest homologue, TRPM7, both combine a cation channel with an alpha-kinase domain. However, the role of this alpha-kinase domain in TRPM6 channel activity remains elusive. The aim of this study was to investigate the regulation of TRPM6 channel activity by intracellular ATP ...
متن کاملRACK1 Inhibits TRPM6 Activity via Phosphorylation of the Fused α-Kinase Domain
BACKGROUND The maintenance of the body's Mg(2+) balance is of great importance because of its involvement in numerous enzymatic systems and its intervention in neuromuscular excitability, protein synthesis, and nucleic acid stability. Recently, the transient receptor potential melastatin 6 (TRPM6) was identified as the gatekeeper of active Mg(2+) transport and therefore plays a crucial role in ...
متن کاملMethionine sulfoxide reductase B1 (MsrB1) recovers TRPM6 channel activity during oxidative stress.
Mg(2+) is an essential ion for many cellular processes, including protein synthesis, nucleic acid stability, and numerous enzymatic reactions. Mg(2+) homeostasis in mammals depends on the equilibrium between intestinal absorption, renal excretion, and exchange with bone. The transient receptor potential melastatin type 6 (TRPM6) is an epithelial Mg(2+) channel, which is abundantly expressed in ...
متن کاملEpithelial Mg channel TRPM6: insight into the molecular regulation
Our understanding of the molecular mechanisms of renal magnesium (Mg) handling has greatly enhanced over recent years. This review highlights the regulatory factors controlling Mg homeostasis through its effects on the epithelial Mg channel TRPM6 (Transient Receptor Potential Melastatin subtype 6), the gatekeeper of the body’s Mg balance. Drug treatment, acid-base status, and several hormones h...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 460 شماره
صفحات -
تاریخ انتشار 2014